
1. Introduction
The ability to predict decadal rainfall variability over land remains one of the grand challenges in climate pre-
diction. Regional prediction of rainfall has limited skill on timescales from seasons to decades (Hawkins & 
Sutton, 2011; Knutti & Sedláček, 2013; Kushnir et al., 2019; Pathak et al., 2019; Shepherd, 2014). For example, 
several recent studies have shown the underestimated signals in models, or the so-called “signal-to-noise par-
adox” (e.g., Scaife et al., 2014; Scaife & Smith, 2018; Siegert et al., 2016; Strommen & Palmer, 2019; Zhang 
et al., 2021; Zhang & Kirtman, 2019b) in decadal rainfall predictability (Smith et al., 2019), implying potentially 
serious issues in current modeling systems that fail to capture the observed decadal rainfall signals.

The ocean plays a crucial role in modulating low-frequency rainfall variability (see Battisti et al., 2019 for re-
view of current understanding). Variations in sea surface temperature (SST) (e.g., El Niño/Southern Oscillation, 
ENSO) can result in substantial impacts on local air-sea feedbacks and teleconnection patterns affecting regional 
US precipitation variability (Grondona et al., 2000; Infanti & Kirtman, 2016; Mamalakis et al., 2018). However, 
extra-tropical mesoscale oceanic drivers of precipitation are not necessarily well represented in current GCMs 
(e.g., the fifth Coupled Model Intercomparison Project, CMIP5). In recent years, improvements in high-perfor-
mance computing have enabled high-resolution GCMs with eddying (e.g., eddy-resolving and eddy-permitting) 
ocean models to include more mesoscale ocean processes (e.g., Delworth et al., 2012; Roberts et al., 2020; S. 
Wang et al., 2019; Zhang, 2020; Zhang et al., 2021). Studies with eddying GCMs show considerable benefits, 
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for example, with better representation of ocean surface climatology (Kirtman et  al.,  2012; Siqueira & Kirt-
man, 2016), improvements in air-sea interactions (Bryan et al., 2010; Kirtman et al., 2017), and implications for 
remarkable impacts on precipitation changes especially over ocean regions (He et al., 2018).

Compared with their lower-resolution counterparts, eddying GCMs more accurately simulate fronts and the 
sharpness of SST gradients in the Gulf Stream (Siqueira & Kirtman, 2016) that are necessary to reproduce the 
observed distributions of the rainfall climatology (Bryan et al., 2010; Johnson et al., 2020; Minobe et al., 2008). 
Mesoscale air-sea interaction processes in the western boundary currents may influence the overlying atmospher-
ic boundary layer and the upper troposphere and atmospheric circulation (Feliks et al., 2011; Siqueira et al., 2021; 
Small et  al.,  2008). Recent research by Zhang et  al.  (2021) performed coupled model experiments with ed-
dy-resolving and eddy-parameterized ocean components and found better-represented subsurface ocean thermal 
and vertical structures along the Gulf Stream and its extension. The presence of ocean mesoscale features and 
associated vertical connectivity in eddy-resolving models contributes to increased decadal SST variability and 
predictability over the Gulf Stream and several other eddy-rich regions (Zhang et al., 2021). However, whether 
and the degree to which the inclusion of ocean mesoscales affects remote regional climate over land–particularly 
decadal Southeast US (SEUS) rainfall and teleconnections–remains unclear.

The motivation for addressing decadal SEUS rainfall variability in this study is twofold. Firstly, due to im-
plications of increasing drought over the SEUS region in recent decades (e.g., Seager et  al.,  2009; H. Wang 
et  al.,  2010; Williams et  al.,  2017), understanding the variability of and mechanism for decadal-scale SEUS 
rainfall has considerable socioeconomic benefits in the management of agriculture, water supply, and ecosys-
tem. This study is also motivated by recent findings in Infanti and Kirtman (2019), who ran a set of ensemble 
prediction experiments with and without a resolved ocean and argued that the resolved Gulf Stream could play 
a dominant role in the 36-month SEUS rainfall prediction. The mechanism for the increased prediction skills of 
multi-year SEUS rainfall with the eddy-resolving model is nevertheless unresolved.

Low-frequency SEUS rainfall significantly responds to ocean surface conditions and large-scale patterns of SSTs 
such as ENSO, the Pacific Decadal Oscillation (PDO) (e.g., Fuentes-Franco et al., 2016; L. Li et al., 2012), and 
the Atlantic Multi-decadal Oscillation (AMO) (e.g., Burgman & Jang, 2015; Kwon et al., 2009). For instance, 
ENSO can play an essential role in modulating seasonal to interannual SEUS rainfall variability, especially dur-
ing winter seasons (Hoerling et al., 1997; Infanti & Kirtman, 2019; Schmidt et al., 2001; Trenberth et al., 1998). 
The impacts of tropical cyclones (Chan & Misra, 2010; Knight & Davis, 2007; Nogueira & Keim, 2011) and 
surface soil moisture (Yoon & Leung, 2015) on SEUS rainfall have also been addressed in previous studies. Of 
particular interest here is the North Atlantic subtropical high (NASH). W. Li et al. (2011) and W. Li et al. (2012) 
have noted that the displacement of the NASH western ridge influences the SEUS rainfall in summer by changing 
the moisture transport and vertical motion. The westward extension of the NASH toward the continental US con-
tributes to increased northward flow and low-level convergence, leading to upward motion and more precipitation 
over the SEUS.

Here we diagnose how mesoscale ocean features affect decadal-scale SEUS precipitation and teleconnections 
based on the hypothesis that eddying model improves the simulations of the Gulf Stream SST and its connection 
with the NASH and hence regulates decadal SEUS rainfall variation. Possible influences of SSTs and the NASH 
on the SEUS rainfall at decadal timescales is discussed based on a suite of global coupled model simulations with 
the Community Climate System Model Version 4.0 (CCSM4; Gent et al., 2011) using eddying and eddy-param-
eterizing ocean component models.

2. Data and Method
2.1. Data

Observed monthly precipitation data are obtained from the Global Precipitation Climatology Project (GPCP) 
version 2.3 combined precipitation dataset (1979-present; Adler et al., 2018) and the gauge-based Global Precip-
itation Climatology Center (GPCC) precipitation product (1901–2016; Schneider et al., 2017) from the National 
Center for Atmospheric Research (NCAR). The GPCP data has a 40-year record and lower resolution on global 
2.5° grids, whereas the GPCC provides land-surface precipitation with 1° × 1° spatial resolution and a long-time 
record. To represent the NASH variability, we use the geopotential heights at 850 hPa from the NOAA's twenti-
eth-century reanalysis version-2c data (20CV2c; Compo et al., 2011).
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We assessed 30 coupled models from CMIP5 that were used as supplementary analyses (Table S1 in Support-
ing  Information  S1). All CMIP5 models are considered as low-resolution GCMs with an eddy-parametrized 
ocean. To equally weight each model, we only consider the first realization of each model's historical simulation. 
The results based on CMIP5 models are analyzed and compared with observational estimates.

2.2. Model Experiments

To examine the influence of ocean mesoscales on climate simulations, we perform two different sets of experi-
ments using CCSM4 with eddy-parameterizing (1° ocean; hereafter, LRC) and eddying (0.1°; hereafter, HRC) 
ocean components, respectively. CCSM4 is a fully coupled climate model consisting of component models for 
atmosphere, land, ocean, sea ice, and the coupling infrastructure. A general description of CCSM4 can be found 
in Gent et al. (2011).

In this study, the LRC experiment is a present-day control simulation (greenhouse gas concentrations for 1990) 
using 1° atmosphere/land coupled to the ocean and sea-ice models with the nominal 1° horizontal resolution. 
LRC is initialized with an ocean at rest and allows for 200 years of spin-up period and then a 300-year simulation 
is integrated for analysis (the same simulation as used in Zhang & Kirtman, 2019a). HRC uses 0.5° atmosphere/
land and nominal 1° horizontal resolution of the ocean and sea-ice component models. HRC experiments include 
three high-resolution simulations that are identical except for a small perturbation in the initial conditions. The 
initial condition for our first HRC simulation is taken from the end of the previously completed LRC experiment, 
and we ran the HRC model for 155 years and only analyzed the last 55 years. The two other HRC simulations are 
initialized, with small initial perturbations, at year 48 of the first, and run for 70 years. We drop the first 20-year of 
both of these simulations in our analysis. The details of CCSM4 HRC and LRC model experiments are discussed 
in Zhang et al. (2021). Thus, we have a total of 155 years of HRC and 300 years of LRC for analysis.

To diagnose the potential impact of atmospheric resolutions, we perform an additional experiment (hereafter, 
LRC-OCN) with a pre-released version of CCSM4, which has the same ocean and sea-ice model resolution (1°) 
as LRC and the exact atmospheric and land model resolution (0.5°) as HRC (see details in Kirtman et al., 2012). 
LRC-OCN has a present-day control simulation of 150 years, and the first 50 years are taken as spin-up periods.

3. Results and Discussion
We first show the observed (GPCC and GPCP) and model simulated (HRC and LRC) decadal variance of rain-
fall over the SEUS and western North Atlantic in Figure 1 (left panels). We removed any linear trend from the 
datasets and applied a 5-year low-pass Butterworth filter to the anomalies to represent internal rainfall variability 
at decadal timescales. Here we define the SEUS as land region bounded by 25° to 38° N and 266° to 284° E. 
Decadal SEUS rainfall variance is then estimated as the averaged variance of land grids within the dashed box 
in Figure 1a (with ocean grids masked). Compared with both observational estimates (GPCC: 0.12 mm2/day2; 
GPCP: 0.11 mm2/day2), the model simulations generally show smaller decadal SEUS rainfall variance. CMIP5 
multi-model mean estimates (based on 30 model historical simulations in Table S1 in Supporting  Informa-
tion S1) show 21% lower decadal SEUS rainfall variance than observational estimates based on GPCP. Overall, 
CMIP5 models (73%), including CCSM4, underestimate decadal rainfall variance in the SEUS (Figure S1 in 
Supporting Information S1).

We identify an increase in the decadal variance of the SEUS rainfall in HRC (0.10 mm2/day2; Figure 1c) com-
pared to LRC (0.08 mm2/day2; Figure 1d). Whether this improvement is due to finer ocean resolution remains 
unassessed in Figure 1 given that both the atmospheric and oceanic resolutions are different between LRC and 
HRC. However, the role of the ocean resolution is isolated in Figure S2 in Supporting Information S1. Here we 
note that the slightly larger decadal variance in SEUS rainfall detected in LRC-OCN (0.5° atmosphere; Figure 
S2a in Supporting Information S1) compared to LRC (1° atmosphere; Figure 1d) implies that the increased at-
mospheric resolution is also partially responsible for the increased variance, but the resolved ocean mesoscale 
features also remain important. We also note that even though the decadal SEUS rainfall variability is slightly 
larger in LRC-OCN (0.09 mm2/day2) compared to LRC, the rainfall climatology only indicates small differences 
(Figure S3 in Supporting Information S1). LRC, LRC-OCN, and HRC show similar Pearson's pattern correlations 
with observational estimates of decadal rainfall variance patterns, with coefficients ranging from 0.74 to 0.77. 
Pearson's pattern correlation analysis of the leading Empirical Orthogonal Function (EOF) patterns for decadal 
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SEUS rainfall indicates that compared with LRC (0.28) and LRC-OCN (0.30), HRC is higher correlated with the 
observed EOF pattern with a coefficient of 0.42.

The leading EOF pattern of decadal rainfall variability in HRC (Figure 1g) suggests that a tilted zonal dipole 
over the ocean in HRC, similar to the GPCP observations (Figure 1f), is possibly linked to the Gulf Stream 
with maximum rainfall over the SEUS. However, the signal is weaker over SEUS than observational estimates 
(Figures 1e and 1f). The center of action in LRC and LRC-OCN (Figures 1h and S2b in Supporting Informa-
tion S1) is further south and east of the observed and HRC. Although the increased atmospheric and land model 
resolution can play a role in decadal SEUS rainfall variability, HRC can generally capture the observed maxi-
mum rainfall signal over the SEUS in the leading EOF mode, which is missing in LRC and LRC-OCN. Besides, 
several earlier studies have identified better representation of the Gulf Stream SST climatology and decadal 

Figure 1. Decadal variance and leading EOF patterns (unit: mm/day) of monthly rainfall anomalies over the Southeast US and western North Atlantic region: (a), (e) 
GPCP, (b), (f) GPCP, (c), (g) LRC, and (d), (h) HRC. The land region within the black dashed box (25 to 38° N, 266° to 284° E; with ocean grids excluded) indicates 
the region of the Southeast US. Values of decadal SEUS rainfall variance for each observation and model simulation are shown on the top left corner of (a)–(d). All the 
data have been applied with a 5-year low-pass filter before analysis.
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variability with eddy-resolving CCSM4 compared with its lower-resolution 
counterparts that are eddy parameterized (Infanti & Kirtman, 2019; Siqueira 
& Kirtman, 2016; Zhang et al., 2021). Consistent with earlier research (e.g., 
Kirtman et al., 2012; Siqueira & Kirtman, 2016), we detect a warmer SST 
and sharper SST gradient especially along the Gulf Stream in HRC com-
pared with LRC (Figure S4 in Supporting  Information  S1). Possible rela-
tionship between Gulf Stream SST and low-frequency SEUS rainfall in HRC 
instead of LRC has been reported by Infanti and Kirtman (2019) based on 
eddy-resolving CCSM4 initialized prediction experiments. Based on these 
differences we hypothesize that a more realistic Gulf Stream that resolved 
many mesoscale ocean processes is a partial contributor in decadal rainfall 
variability over the SEUS.

To examine the role of SST variability in modulating decadal SEUS rainfall, 
we show in Figure 2 the correlation between decadal SEUS rainfall index 
and global SST anomalies for the observational estimates and the models, 
with shading significant at 95% confidence level based on the Student's t 
test (two-tailed). The decadal SEUS rainfall index is defined as the area-av-
eraged values of 5-year low-pass filtered rainfall anomalies over the SEUS 
(25°–38°N, 266°–284°E) land points. Both LRC and CMIP5 models (median 
correlation coefficients for 30 CMIP5 models) show a strong correlation be-
tween the decadal SEUS rainfall index and the tropical Pacific SST anoma-

lies (Figures 2a and 2c). A similar pattern is also identified for LRC-OCN with finer atmospheric resolution than 
LRC (Figure S5 in Supporting Information S1). Compared with LRC, LRC-OCN shows even higher correlations 
between decadal SEUS rainfall and tropical Pacific SST anomalies (with coefficients up to 0.6), which indicates 
the potential impact of atmospheric internal variability on decadal SEUS rainfall (e.g., Seager et al., 2009). It is 
worth mentioning that the dominant role of tropical Pacific SST anomalies in decadal SEUS rainfall in LRC and 
CMIP5 models only occurs in winter seasons (Figure S6 in Supporting Information S1).

However, the strong positive link between the decadal SEUS rainfall index and topical SST signal is weak or even 
missing in HRC and observational estimates (Figures 2b and 2d). Interestingly, HRC and observational estimates 
suggests that decadal SST in the Gulf Stream and its surrounding regions can be the dominant contributor to 
decadal SEUS rainfall variability. We note that the correlation between decadal SEUS rainfall and Gulf Stream 
SST is detected in HRC is stronger than observational estimates, possibly because the spatial resolution of the 
currently available observed SST dataset–HadISST–is still too low to reproduce realistic decadal SST variability 
(Deser et al., 2010; Solomon & Newman, 2012), but we cannot eliminate the possibility that HRC overemphasiz-
es the importance of the Gulf Stream variability. By estimating the pattern correlation of Figures 2a–2d against 
observational estimate (Figure 2b), we find that HRC shows higher pattern correlations (0.22; significant at 95% 
confidence level based on Pearson correlation) with observational estimates than LRC (0.02; insignificant) and 
CMIP5 model (−0.02; insignificant). A 0.22 correlation globally between HRC and observational estimates 
might still be low, but HRC does a better job in the region of interest, with a correlation of 0.55 in the North 
Atlantic. One possible interpretation of lower global but reasonable regional correlation is that model physics in 
HRC is happens to be tuned to represent the Gulf Stream and mesoscale ocean processes as best as it can in the 
North Atlantic, which may help reduce biases nearby. The authors are not aware of a specific tuning effort in this 
regard. Meanwhile, LRC shows strong pattern correlation with CMIP5, with a coefficient of 0.71 globally. We 
thus conclude that HRC produces an improvement of decadal SEUS rainfall induced teleconnections compared 
with LRC, indicating the significant impact of ocean mesoscales on the SEUS rainfall-SST teleconnections. We 
further argue that LRC and most CMIP5 models may overestimate the role of tropical Pacific SST in the SEUS 
rainfall over decadal timescales. This overestimation can be explained by the wintertime connection between 
SEUS rainfall and tropical Pacific SST anomalies. The results presented here are in good agreement with Infanti 
and Kirtman (2019), who argued that instead of tropical Pacific SST, the Gulf Stream played a leading role in the 
36-month prediction of the SEUS precipitation (and drought). We also note that besides the Gulf Stream, decadal 
SST anomalies in the Indian Ocean and South Atlantic are strongly linked to decadal SEUS rainfall (Figure 2d). 
Compared with LRC, HRC indicates a significant increase of decadal SST variability over the Gulf Stream, South 
Atlantic and Indian Ocean (see figure 7 in Zhang et al., 2021). This enhanced decadal SST signal due to increased 

Figure 2. Correlation between decadal Southeast US rainfall index (25°–
38°N, 266°–284°E) and global SST anomalies based on (a) CMIP5 (median 
correlation coefficients at each grid for 30 CMIP5 models), (b) OBS, (c) LRC, 
and (d) HRC. All the data have been applied with a 5-year low-pass filter. The 
maps only show the 95% confidence interval for the correlations based on the 
Student's t test (two-tailed).
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ocean model resolution may influence remote regional climate such as low-frequency rainfall variability over 
the SEUS. SST signal on decadal timescales and longer is beyond the scope of the paper, and the focus is on the 
SEUS rainfall and SST anomalies in the Gulf Stream and its surroundings.

The influence of the NASH on interannual variations of the SEUS rainfall has been discussed in several earlier 
studies (e.g., W. Li et al., 2011; L. Li et al., 2012). Here we aim to investigate the role of the NASH in decadal 
SEUS rainfall variability by comparing HRC with LRC. We focus on 850 hPa geopotential heights as it is a com-
mon indicator for the NASH. Figure 3 shows the composite of standardized decadal 850 hPa geopotential height 
anomalies during wet and dry conditions over the SEUS. The corresponding composite of standardized decadal 
SST anomalies during wet and dry conditions is also shown in Figure S7 in Supporting Information S1. During 
the SEUS wet conditions, the warm SST and strong high-pressure anomalies along the Gulf of Mexico, SEUS, 
and Gulf Stream in HRC produce increased northward moisture transport and low-level convergence (as shown 
in Figure S8a in Supporting Information S1), which leads to upward motion and ultimately more precipitation 
over the SEUS. We argue this increased rainfall is due to the westward extension of the NASH (Jones, 2019; W. 
Li et al., 2011; L. Li et al., 2012). During the SEUS dry conditions, we find cold SST anomalies along the Gulf 
Stream and a robust low-pressure anomaly centered around the Gulf Stream extension in HRC, contributing to 
southward flow and low-level divergence (Figure S8b in Supporting Information S1) and thus downward mo-
tion and less precipitation over the SEUS. As suggested by W. Li et al. (2011) and L. Li et al. (2012), the west-
ward extension and retreat of the NASH plays a leading role in modulating summer rainfall variability over the 
SEUS. While the results shown here focus on low-frequency filtered data, the summer season dominates since 
this is when the SEUS rainfall is maximum. Observational seasonality analysis (Figure S9 in Supporting  In-
formation S1) demonstrates that compared with winter season (climatology: 3.27 mm/day; standard deviation: 
0.19 mm/day), summer SEUS rainfall variability (climatology: 4.23 mm/day; standard deviation: 0.23 mm/day) 
makes up a relatively larger component of annual mean precipitation. The results presented generally capture 
the southwest pattern of the NASH western ridge (see Figure 3 in L. Li et al., 2012), implying that the westward 
movement of NASH regulates decadal-scale rainfall variability over the SEUS region. HRC generally resembles 
the spatial patterns of the NASH variability based on observational estimates, though HRC somewhat overesti-
mates the amplitude of the decadal NASH pressure anomalies and its connection to the SEUS rainfall (Figure 3). 
To quantify how well HRC captures the observed NASH-SEUS rainfall relationship in Figure 3, we estimate the 
pattern correlation of Figures 3c and 3e against Figure 3a. The results show that HRC (0.51) is better correlated 
with the observational estimates than LRC (−0.34). Similar results are found when computing the pattern corre-
lation of Figures 3d and 3e against Figure 3f. Although HRC may overestimate the role of the NASH in the SEUS 
rainfall, HRC better reproduces the NASH-SEUS rainfall relationship (Figure 4) compared to LRC.

LRC, conversely, fails to capture decadal NASH variability and its connection to the SEUS rainfall. For example, 
LRC largely fails to capture the westward expansion or shift of the NASH that is apparent in the observational 

Figure 3. Composite of standardized decadal 850 hPa geopotential height anomalies (unit: m) during wet and dry conditions over the SEUS based on (a), (b) OBS, (c), 
(d) HRC, and (e), (f) LRC. Wet (dry) condition is identified when decadal SEUS rainfall index is above (below) plus (minus) one standard deviation.
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estimates and in HRC. Changes in decadal SEUS rainfall in LRC are possibly due to variations of the pressure 
anomaly centers over the western US (Figures 3e and 3f) and eastern tropical Pacific. LRC shows much weaker 
decadal SST-NASH correlations especially over the Gulf Stream (and mid-latitude North Atlantic) than HRC, 
implying different roles of the Gulf Stream SST in decadal NASH variability with and without a resolved Gulf 
Stream (Figure S10 in Supporting Information S1). The strong link between the Gulf Stream SST and the NASH 
is further supported by Figure S10 in Supporting Information S1, showing that the low-frequency filtered Gulf 
Stream SST index in HRC is strongly correlated with the NASH over the Gulf Stream and tropical North Atlantic. 
A warmer SST around the Gulf Stream in HRC than LRC (Figure S4 in Supporting Information S1) vary coher-
ently with a higher low-level geopotential height (Figure S11 in Supporting Information S1), which is related to a 
wet condition (more precipitation) over the SEUS (Figure 3). Compared with HRC, the Gulf Stream SST-NASH 
correlation is weaker in LRC (Figure S11b in Supporting Information S1). The pattern in HRC (Figure S11a 
in Supporting  Information S1) generally mimics the pattern between SEUS rainfall and the NASH as shown 
in Figures 3c and 3d, indicating the close relationships among the Gulf Stream SST, NASH and SEUS rainfall 
variability.

It is noted that there is a strong positive correlation between the SST and 850 hPa geopotential height anomalies 
around the Gulf Stream (Figure 3 and S7 and S11 in Supporting Information S1), which is inconsistent with the 
results of several earlier research showing the negative correlation between the mid-latitude SST and pressure 
in the lower troposphere (e.g., Fink et al., 2012; Minobe et al., 2008; Sugimoto et al., 2021; Xu et al., 2010). As 
shown by Minobe et al. (2008), for example, mesoscale warm (cold) SST decreases (increases) the surface pres-
sure over the Gulf Stream. One possible interpretation for the positive correlation between the SST and low-level 
geopotential height (pressure) anomalies is the atmospheric influence on the SST. In HRC and observations, 
high (low) pressure anomalies contribute to a decrease (an increase) in cloud cover, increasing (decreasing) solar 
radiation and warming (cooling) the SST under the high (low) pressure anomalies.

Moreover, the resolved Gulf Stream also shows strong correlations with decadal SST variability over the South-
ern Atlantic (positive), Indian Ocean (negative), and Kuroshio Current (positive) in HRC (Figure S12 in Support-
ing Information S1). The correlations shown in Figure 2 and S11 and S12 in Supporting Information S1 support 

Figure 4. Diagram of the westward extension of the NASH for increased rainfall over the Southeast US.
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the argument that the NASH, SEUS rainfall and the Gulf Stream SST vary coherently on decadal timescale and 
that much of this coherence in the observational estimates and HRC is missing in LRC and the CMIP models. 
We note that in HRC, the Gulf Stream SST and global SSTA have relatively large correlations in regions that are 
quite remote from the North Atlantic, and we cannot rule out that these remote SSTA can affect the NASH and 
the SEUS rainfall. Relatively large correlations cannot be used to detect causal relationship–addition numerical 
experiments are required, although this is beyond the current study. Nevertheless, we can conclude that the re-
lationship between NASH, SEUS rainfall, and the Gulf Stream SST is markedly different in the observational 
estimates and HRC compared to LRC and the CMIP models, and we assert that this is largely due to resolved 
ocean mesoscale processes.

4. Summary and Conclusion
This study investigates decadal SEUS rainfall and its teleconnections using high-resolution eddying CCSM4 
simulations compared with its lower-resolution counterparts that are eddy parameterized. With better resolved 
mesoscale processes, the simulations indicate an improved annual mean rainfall climatology along the Gulf 
Stream that is generally consistent with observational estimates. We find no notable improvement in the annual 
mean rainfall climatology over the SEUS, whereas enhanced decadal SEUS rainfall variance is detected with 
HRC in better agreement with observational estimates. Though atmospheric resolution may partly contribute to 
the increase in the decadal variance of the SEUS rainfall, the leading EOF pattern in HRC shows consistency with 
observations, indicating the influence of the resolved Gulf Stream with a local maximum over the SEUS. This 
dominant rainfall pattern in HRC and observational estimates is not the leading pattern in LRC or LRC-OCN, and 
thus, we conclude that this decadal variability is connected to resolved Gulf Stream variability.

The above conclusion is further supported by the decadal SEUS rainfall teleconnections with global SST. Con-
sistent with Infanti and Kirtman (2019), the SEUS rainfall shows a higher correlation with the North Atlantic SST 
than the tropical Pacific SST on decadal timescales in HRC and observations. HRC suggests an even higher cor-
relation between decadal SEUS rainfall and the Gulf Stream SST than observational estimates, perhaps indicating 
that HRC over-predicts the connectivity between Gulf Stream variability and decadal SEUS rainfall variability. 
Conversely, LRC and CMIP5 models overestimate the role of tropical Pacific SST anomalies in decadal SEUS 
rainfall. Although the seasonality of decadal SEUS rainfall is not our focus in this manuscript, we re-examine 
the SEUS rainfall-SST relationship in the summer and winter seasons, respectively. Perhaps surprising is that 
the overall correlation patterns, as shown in Figure 2, pick up the wintertime relationships (Figure S6 in Sup-
porting Information S1). Interestingly, HRC and observation show a positive (negative) correlation between the 
SEUS rainfall and tropical Pacific SST during winter (summer). Decadal SEUS rainfall shows no discernable 
connection with tropical Pacific SST because the summer and winter anomalies cancel each other.

A resolved Gulf Stream (SST) suggests a strong link with the NASH variations. Different from previous studies 
(Minobe et al., 2008; Sugimoto et al., 2021; Xu et al., 2010), we detect a positive correlation between the SST 
and the NASH anomalies over the mid-latitude western North Atlantic, implying the atmospheric influence on 
the SST along the Gulf Stream. An eddying coupled model improves the representation of air-sea interaction and 
the NASH variations, regulating decadal SEUS rainfall variability. HRC can generally reproduce the observed 
westward extension and retreat of the NASH that regulates the variations of decadal SEUS rainfall (Figures 3 
and 4), despite that HRC may overestimate the correlation between the SEUS rainfall and NASH. As suggested 
in HRC and observations, the westward extension of the NASH brings increased northward moisture transport 
and low-level convergence, leading to rising motion and ultimately more rainfall in the SEUS, which can be 
explained by a steady-state quasi-geostrophic balance. However, the LRC simulation fails to capture the realistic 
Gulf Stream, the westward extension of the NASH, and its relationship with the SEUS rainfall.

Uncertainty remains in this study as the length of high-resolution observation and model simulations is limited, 
and the results may be model-dependent. We acknowledge that there are possible caveats to our results and pro-
posed dynamics. We argue that an eddying coupled model improves the air-sea interactions in the Gulf Stream 
and the North Atlantic Subtropical High, modulating SEUS rainfall variability. It remains debatable whether the 
ocean or the atmosphere plays a more significant role in the air-sea interaction and associated SEUS rainfall with 
more mesoscale ocean processes included. Besides, many other factors that may influence decadal SEUS rainfall 
such as tropical cyclone activities and surface soil moisture are not addressed. However, this study, for the first 
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time, demonstrates the potential benefits of an ocean eddying GCMs for regional rainfall simulations and predic-
tions over land. Arguably, the results presented here demonstrate that using models that capture oceanic mesos-
cale features have the potential to improve the representation of rainfall variability remotely and regionally. How 
well this translates across models remains an open question and whether this improved simulated low-frequency 
variability of remote rainfall translates into improved predictions remains an open question.

Data Availability Statement
All the observational, reanalysis data and CMIP5 historical simulations are properly referenced and publicly 
available. The GPCP and GPCC precipitation datasets are downloaded through https://psl.noaa.gov/data/gridded/
data.gpcp.html and https://psl.noaa.gov/data/gridded/data.gpcc.html, respectively. The twentieth century reanal-
ysis of geopotential height at 850 hPa can be found from NOAA's Physical Sciences Laboratory (https://psl.
noaa.gov/data/20thC_Rean). Thirty CMIP5 model historical simulations and the associated model descriptions 
can be obtained from https://esgf-node.llnl.gov/search/cmip5. The CMIP5 models used in the study are listed in 
Table S1 in Supporting Information S1. The Southeast US rainfall index (5-year low-pass filtered) derived from 
observations and models can be accessed by using the DOI http://doi.org/10.5281/zenodo.4433147. Besides, the 
model codes of CCSM4 can be accessed from http://www.cesm.ucar.edu/models/ccsm4.0/. The CCSM4 HRC 
and LRC model simulations used in this study have been archived at https://doi.org/10.5281/zenodo.5057616.
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